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Asymptotic function for multigrowth surfaces using power-law noise
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Numerical simulations are used to investigate the multiaffine expangand multigrowth exponens, of
ballistic deposition growth for noise obeying a power-law distribution. The simulated valygg afe com-
pared with the asymptotic functiofi,=1/q that is approximated from the power-law behavior of the distri-
bution of height differences over time. They are in good agreement for targke simulatedy, is found in
the range H<a,<2/(q+1). This implies that large rare events tend to break the Kardar-Parisi-Zhang
universality scaling law at higher ordgr
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I. INTRODUCTION cus on the power-law noise model.
The noise in KPZ growth is ordinarily considered uncor-
Growing rough surfaces occur everywhere in nature andelated Gaussian noise. Zhang suggested KPZ growth with
are encountered in engineering and everyday life. Exampledncorrelated power-law noig@]. He performed numerical
include, fluid displacement in porous medi, the growth simulations of a BD(ballistic depositionh model and found

; : : that @ varies with the exponent of the power-law noige
of crystals[2] or colonies of bacterig3], the propagaﬂon of Power-law behavior of the noise distribution was observed in
a wet front on papef4], and so on5]. A growing rough

) : a fluid flow experimen{12]. Therefore, the Zhang model is
surface is one of the simplest patterns created by a nonequlynsidered a moderate model for growing rough surfaces.

Iibrium state. Consequently, many studies have' examined o the other hand, Barasieet al. investigated multiaffin-
growing rough surfaces..Two exponents characterlze_a 9rOWgy of the BD model with power-law noisgL3]. Multiaffine
ing rough surface. One is the roughness expoaenthich  anaiysis is defined by theth order height-height correlation
relates the space length scaléo the surface widttw, (W fynction Cq(X) as Cq(x)={(|h(x")—h(x+x)|%), ~x%%,
~Xx%). The other is the growth exponeft which relates the Whereaq is the qth order roughness exponent.
time scalé to the surface Width,\/(l"’tﬁ). A scaling function While the entropy spectrum method describes tye
including these two exponents can be written @s namiccharacteristics ofelf-similarfractals[14], it describes
~x*W¥(t/x*), wherez=alB is the dynamic exponerf6]. the static characteristics oelf-affinefractals[15]. That is,
There are two different scaling regimesin depending on multiaffine analysis is equivalent to the entropy spectrum
the argumentu=t/x% ¥ (u)~uf when u<1, and ¥(u) method for self-affine fractalgl5]. Therefore, we must dis-
~const wheru>1. cuss the behavior of thgth order growth exponeng, in
The KPZ(Kardar-Parisi-Zhangequation was proposed as order to examine the dynamic characteristics of growing self-
an equation that mode|s the dynamics of a growing roug[@fﬁne fl’aCta|S.. In Ol’dinary Va.r"iance analysis fOI‘ the Cqse .
surface[7]. The KPZ equation is written ash=oV2h =2,a mean field approximation has been appllec_i to obtain
+(N/2)(Vh)2+ 7, whereh, o, \, and 7 are the surface the relations among., a, and g [16], and the scaling law
height, effective surface tension, lateral growth strength, ang@+2z=2 was confirmed. _
a noise term, respectively. Since the KPZ equation is a sto- MYllys etal. investigated the slow combustion of paper
chastic nonlinear differential equation, an exact solution canand reported thatq and 4 on the combustion front varied
not be obtained. However, the roughness and growth expdVith g at short range time and scal&7]. Based on their
nents can be calculated by the renormalization group metho@discussion, we can expand thh order height-height corre-
asa=1 and B=1, respectively[7]. It has been suggested lation function as
that the scaling lawr+z=2 holds in the KPZ universality _ N , , q
class. Although most numerical simulations follow this re- Ca(x D) ={| (1) = O XU 4D s (D)
sult, many experiments of growing rough surfaces show where sh(x,t)=h(x,t) —(h(t))x. Then, we can define,
=0.75~0.85>3 [5]. However, the KPZ universality scaling and Bq as
law is satisfied even in many experiments whasis larger N
thanz. In order to interpret the large, several models have Cq(x,0)~x%, (2a)
been proposed. These include the power-law noise model C,(0)~ 94 (2b)
[8], quenched noise modgd], and correlated noise model a= '
[10]. Moreover, certain systems with a large obey EW  The exponentsy, and 3, are defined at the limits—0 and
(Edwards-Wilkinsonm universality[11]. In this paper, we fo- t—0, respectively.
The above-mentioned numerical simulations did not ex-
amine theq dependences of, and 3, on variousu thor-
*Electronic address: katsurag@asem.kyushu-u.ac.jp oughly. Barabsai studied the temporal fluctuation of the sur-
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face width, however, his analysis examined the period after
the saturation of surface growt8]. Therefore, we investi-
gate the behavior ok, and S, directly to determine how,
and 8, depend on the noise parameteffor higher order.

We are also interested in whether the KPZ universality scal-
ing law a+z=2 is still valid for higher orderg. Here, we
report the results of numerical simulations of the BD model,
and compare simulated data and the calculated asymptotic
functions foray and gy

(1/q) In C (x,0)

II. SIMULATIONS

We investigate a +1 dimensional BD model whose
growing dynamics are described by

h(x,t+1)=max{ h(x—1}t)+ n(x—1t),h(x,t)
+ 7(x,t),h(x+ 1)+ p(x+11t)]. 3

This ultradiscrete BD algorithm can be connected to the KPZ
equation[19]. We start withh(x,0)=0 for all x, and the
surface evolves according to E&). We use periodic bound-
ary conditions for the space dimension. The uncorrelated
noise 7 is taken from a power-law distribution in the form

(8]

(1/q) In C (0,1)

P(n)~ for »>1, P(5)=0 otherwise.

+1
nt

Int

We focus on the range<2u<5. The variance oP(7) is FIG. 1. Theqth order height-height correlation functions @t
finite for x>>2 and its statistical properties differ from those = 3-0- (@ (1/@)In C¢(x,0) vs Inx. (b) (1/q)In Cy(01) vs Int. In the
of Gaussian noise fou<5 [8,16]. First, we carry out a BD figures, the curves correspond ¢e=1,2, .. .,10, from bottom to
model simulation to investigate thgth order height-height top-
correlation functions. Figure 1 shows the behavior of . S
C,(x,0) and C,(01) at u=3.0. From bottom to top, the —(m+1). Since these distributions obey the power law, we
Cljrves Corresp;qond tq=1,2, ...,10. InFig. 1, we use the denote the exponent asv in this paper. This difference
system sizeL=1024, the time steff =(a) 5000, (b) 2000, between—(u+1) and —» might result from the lateral
and the average ensemble numbér (a) 100, (b) 5. The growth effect of the BD model, which corresponds to the
exponentsa, and 3, are obtained from the slopes of the nonlinear term in the KPZ equation.
curves in Fig. 1. The values ef, and 3, are defined as the

limit of x—0 andt—0, respectivel)[Eqs.(Za) and(Zb)] In IIl. ASYMPTOTIC FUNCTION
addition, for regions of large and x, conventional non- _ _ _
multiaffine scaling appeargl3]. Therefore, the fitting re- Here, we calculate the multigrowth height-height correla-

gions are approximated astts3 and Inx<3. Figure 2 shows tion functionC(0t) based on the multiaffine concej@0].
theq dependences af, and 3, on variousu. For largeqin ~ We discuss the growth path at some positién sh(x',t).
Fig. 2(b), B, seems to collapse independently of Since Figure 4 shows a schematic image of the growth path. The
most of the error for each point is within the symbol used,growth pathéh(x’,t) is the intersection with theSh(x,t)
there are no error bars in Fig. 2. surface at some position=x’. We can generally normalize
When we use noise with a Gaussian distribution, we obthe time range and height  and éhyax— dhpin, respec-
tain the fully parallel curves in plot of Fig. 1. This indicates tively, i.e., we consider the patBh(x’,t) for the range 0
that Gaussian noise and power-law noise affectieorder ~<t<1 and O<sh=<1. We can use the local growth expo-
moment analysis differently, and that the system size is sufrent y to characterize the local singularity of the surface
ficient to calculate thejth order moment. growth | sh(x’,t" + 7) — sh(x',t")|~ 7", wherer=T"! and
Next, we measure the amplitude of the effective noisey=0. The number of height difference segments of length
7m=Sh(x,t+1)— 8h(x,t) from the growth patterns directly |=|sh(x’,t'+7)—h(x’,t')| in the growth path can be
[17]. Figure 3 shows a log-log plot of the probability distri- written asl " from the results of Fig. 3. Therefore, the num-
bution P(| 7m|) VS| 7m|. The parameters used dre=1024,  ber of segments on growth pai(y)dy that have singular-
T=5000, andN=100. P(|7,,|) clearly shows power-law ity exponents in the rangey(y+dvy) is found to scale with
behavior, but these exponents are slightly different fromr asN_ (y)~7~?”. We can obtain the height-height correla-
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FIG. 2. Theq dependences db) «, and(b) 84. The solid and
broken lines correspond to the asymptotic functiores drid 2/
+1), respectively. The inset itb) is a log-log plot.

tion function for the limitr— 0 as follows:

NE 7\d ~ 1+yq—yv
Cqy(0,7) TJ'(T) NA(y)p(y)dy JT p(y)dy,
4)

where the functiom(y) is a density function independent of
7. For a continuous system, the integral in E4). must be
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growth path Sh(x',t)

surface profiles

FIG. 4. A schematic image of the growth path. The surface
profile sh(x,t") corresponds to a snapshot of the surface at some
time t'. The intersection between the rough surfatgx,t) and
some positiork=x" is the growth path.

dominated by the value of that minimizes & yq— yv.
Therefore, we replace with the valuey(q) and compare
the exponent with Eq.2b),

1 v
Bq—q+7(Q)(1— q)- 6)

Note thaty(q) decreases monotonically with increasing
g, andy(q)=0 [21]. In the limiting caseq>1, we assume
that y(q) vanishes faster than d./ Finally, we obtain a
simple asymptotic form oB, as

1
,Bq:a at g>1. (6)

We plot the function 1q in Fig. 2 as solid lines. While this
function does not include any fitting parameter, the simulated
data agree with this function for larggin Fig. 2(b). If we
assume that the relation,+ (aq/B4)=2 holds for higher
orderg, the asymptotic form ot can be calculated as

aqz—qul, at g>1. (7)
This function is plotted in Fig. @ as a broken line. The

simulated values ofr, seem to distribute in the regiondl/
<ay<2/(q+1) at largeq.

IV. DISCUSSION

The contribution of large segments in the integral of Eq.
(4) becomes dominant for higher ordgr Since large seg-
ments are characterized by smallin our notation, y(q)
decays rapidly due to the presence of large rare events with
power-law distributed noise. Then, the effect @f (or v)
becomes negligible, as written in E@). Moreover, Eq.(5)
becomes equivalent to E¢6) at g=w». Since the absolute
value of the second term in E¢p) is not small,3, deviates
from Eq. (6) at g<v. This qualitative change arourg= v

FIG. 3. The distribution of height differences between neighbor-corresponds to the phase transition point of Basakaal.

ing times. The relation between (input noise parametgand v
(measured noise parametés plotted in the inset.

[13]. The term 1¢ originates solely from the normalization
factor 1T in Eq. (4). The presence of large rare events is
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necessary, but the value of the exponent of noise distributiorange of smallx (in particular, the Ley distribution case
is not important for obtaining the asymptotic result Eg). M=<2) remains unsolved.

In the early growth stage, we can confirm the KPZ uni- In a paper combustion front experimegt, varied across
versality scaling law perfectly. For instance, we calculatecthe value 0.5, andy, did not fall beneath 0.317]. This
aq at T=2000 and found that alkq approach the curve for tendency ing, is similar to our result. Myllyset al. found
Eq. (7) independent of.. In addition, a crossover to conven- the effective power-law noise amplitude in their system to be
tional non-multiaffine scaling at largeis clearly observed. 3.72<v=<5.0. Our simulations include this range. Then, the
We can also observe power-law-like tails of the distributionbehavior of 3, inevitably approaches the form of E(f).
of the height differencesh(x+1t)—sh(x,t). Then, o, ~ However, the behavior ok, differs from our result. This
leads to the function @y for the limit T—o using the same Means that the paper combustion front grows according to
calculation as fop, . Since the nonuniformity of the power- POWer-law noise, but breaks the KPZ universality at short
law noise increases gs decreases, the influence of large 'ange in a dlﬁgrent manner from our resullt. Th|§ experimen-
rare events dominates in the smallsystem. Therefore, the (@ System might belong to another universality class. In

smalleru becomes, the nearer, approaches tj. Namely,
aq obeys the KPZ universality scaling law 84 1) in the
early growing stage, and obeys the rare event dominant b
havior 14 in the fully developed stage.

In the inset of Fig. &), a slight discrepancy between the
simulated data and the functiomylis observed. The discrep-
ancy is due to the small, but finitey,(q) effect. Since the
probability of finding a large event decreasesuascreases,
the value y(q) does not decay quickly whep is large.
Therefore, the statistical property for largedeviates from

other experimental systemgth order exponents should be
measured in order to discuss universality classification in

éjetail. There have been no multiaffine analyses of other mod-

els, such as the quenched noise, correlated noise, or EW
class models. Both numerical and experimental studies are
needed to further understand growing rough surfaces.

In summary, we performed numerical simulations of the
BD model with power-law distributed noise £2u<5). The
simulatedqth order growth exponent is in good agreement
with the approximate asymptotic functig = 1/q for higher
order g. Assuming the KPZ universality scaling law,

the power-law noise case and approaches the Gaussian nois¢a,/3,) =2, we obtainaq=2/(q+1). aq is distributed in

case[16]. The range Z u<5 is considered the power-law
dominant range. In this sense, E&) might be a limited

the region 1<y =<2/(q+1). This indicates that, is de-
termined by competition between large rare events and KPZ

approximation form. The precise correction to use for theuniversality.
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