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Asymptotic function for multigrowth surfaces using power-law noise
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Numerical simulations are used to investigate the multiaffine exponentaq and multigrowth exponentbq of
ballistic deposition growth for noise obeying a power-law distribution. The simulated values ofbq are com-
pared with the asymptotic functionbq51/q that is approximated from the power-law behavior of the distri-
bution of height differences over time. They are in good agreement for largeq. The simulatedaq is found in
the range 1/q<aq<2/(q11). This implies that large rare events tend to break the Kardar-Parisi-Zhang
universality scaling law at higher orderq.
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I. INTRODUCTION

Growing rough surfaces occur everywhere in nature
are encountered in engineering and everyday life. Exam
include, fluid displacement in porous media@1#, the growth
of crystals@2# or colonies of bacteria@3#, the propagation of
a wet front on paper@4#, and so on@5#. A growing rough
surface is one of the simplest patterns created by a none
librium state. Consequently, many studies have exami
growing rough surfaces. Two exponents characterize a gr
ing rough surface. One is the roughness exponenta, which
relates the space length scalex to the surface widthw, (w
;xa). The other is the growth exponentb, which relates the
time scalet to the surface width, (w;tb). A scaling function
including these two exponents can be written asw
;xaC(t/xz), wherez5a/b is the dynamic exponent@6#.
There are two different scaling regimes inC depending on
the argumentu5t/xz. C(u);ub when u!1, and C(u)
;const whenu@1.

The KPZ~Kardar-Parisi-Zhang! equation was proposed a
an equation that models the dynamics of a growing rou
surface @7#. The KPZ equation is written as] th5s¹2h
1(l/2)(¹h)21h, where h, s, l, and h are the surface
height, effective surface tension, lateral growth strength,
a noise term, respectively. Since the KPZ equation is a
chastic nonlinear differential equation, an exact solution c
not be obtained. However, the roughness and growth ex
nents can be calculated by the renormalization group me
as a5 1

2 and b5 1
3 , respectively@7#. It has been suggeste

that the scaling lawa1z52 holds in the KPZ universality
class. Although most numerical simulations follow this r
sult, many experiments of growing rough surfaces showa
.0.75;0.85. 1

2 @5#. However, the KPZ universality scalin
law is satisfied even in many experiments whosea is larger
than 1

2 . In order to interpret the largea, several models have
been proposed. These include the power-law noise m
@8#, quenched noise model@9#, and correlated noise mode
@10#. Moreover, certain systems with a largea obey EW
~Edwards-Wilkinson! universality@11#. In this paper, we fo-
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cus on the power-law noise model.
The noise in KPZ growth is ordinarily considered unco

related Gaussian noise. Zhang suggested KPZ growth
uncorrelated power-law noise@8#. He performed numerica
simulations of a BD~ballistic deposition! model and found
that a varies with the exponent of the power-law noisem.
Power-law behavior of the noise distribution was observed
a fluid flow experiment@12#. Therefore, the Zhang model i
considered a moderate model for growing rough surface

On the other hand, Baraba´si et al. investigated multiaffin-
ity of the BD model with power-law noise@13#. Multiaffine
analysis is defined by theqth order height-height correlation
function Cq(x) as Cq(x)5^uh(x8)2h(x81x)uq&x8;xqaq,
whereaq is theqth order roughness exponent.

While the entropy spectrum method describes thedy-
namiccharacteristics ofself-similarfractals@14#, it describes
the static characteristics ofself-affinefractals @15#. That is,
multiaffine analysis is equivalent to the entropy spectr
method for self-affine fractals@15#. Therefore, we must dis
cuss the behavior of theqth order growth exponentbq in
order to examine the dynamic characteristics of growing s
affine fractals. In ordinary variance analysis for the caseq
52, a mean field approximation has been applied to ob
the relations amongm, a, andb @16#, and the scaling law
a1z52 was confirmed.

Myllys et al. investigated the slow combustion of pap
and reported thataq andbq on the combustion front varied
with q at short range time and scale@17#. Based on their
discussion, we can expand theqth order height-height corre
lation function as

Cq~x,t !5^udh~x8,t8!2dh~x81x,t81t !uq&x8,t8 , ~1!

where dh(x,t)[h(x,t)2^h(t)&x . Then, we can defineaq
andbq as

Cq~x,0!;xqaq, ~2a!

Cq~0,t !;tqbq. ~2b!

The exponentsaq andbq are defined at the limitsx→0 and
t→0, respectively.

The above-mentioned numerical simulations did not
amine theq dependences ofaq and bq on variousm thor-
oughly. Baraba´si studied the temporal fluctuation of the su
©2003 The American Physical Society01-1
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face width, however, his analysis examined the period a
the saturation of surface growth@18#. Therefore, we investi-
gate the behavior ofaq andbq directly to determine howaq
andbq depend on the noise parameterm for higher orderq.
We are also interested in whether the KPZ universality s
ing law a1z52 is still valid for higher orderq. Here, we
report the results of numerical simulations of the BD mod
and compare simulated data and the calculated asymp
functions foraq andbq .

II. SIMULATIONS

We investigate a 111 dimensional BD model whos
growing dynamics are described by

h~x,t11!5max@h~x21,t !1h~x21,t !,h~x,t !

1h~x,t !,h~x11,t !1h~x11,t !#. ~3!

This ultradiscrete BD algorithm can be connected to the K
equation@19#. We start withh(x,0)50 for all x, and the
surface evolves according to Eq.~3!. We use periodic bound
ary conditions for the space dimension. The uncorrela
noiseh is taken from a power-law distribution in the form
@8#

P~h!;
1

hm11
for h.1, P~h!50 otherwise.

We focus on the range 2<m<5. The variance ofP(h) is
finite for m.2 and its statistical properties differ from thos
of Gaussian noise form<5 @8,16#. First, we carry out a BD
model simulation to investigate theqth order height-height
correlation functions. Figure 1 shows the behavior
Cq(x,0) and Cq(0,t) at m53.0. From bottom to top, the
curves correspond toq51,2, . . . ,10. InFig. 1, we use the
system sizeL51024, the time stepT5~a! 5000, ~b! 2000,
and the average ensemble numberN5~a! 100, ~b! 5. The
exponentsaq and bq are obtained from the slopes of th
curves in Fig. 1. The values ofaq andbq are defined as the
limit of x→0 andt→0, respectively@Eqs.~2a! and~2b!#. In
addition, for regions of larget and x, conventional non-
multiaffine scaling appears@13#. Therefore, the fitting re-
gions are approximated as lnt<3 and lnx<3. Figure 2 shows
theq dependences ofaq andbq on variousm. For largeq in
Fig. 2~b!, bq seems to collapse independently ofm. Since
most of the error for each point is within the symbol use
there are no error bars in Fig. 2.

When we use noise with a Gaussian distribution, we
tain the fully parallel curves in plot of Fig. 1. This indicate
that Gaussian noise and power-law noise affect theqth order
moment analysis differently, and that the system size is
ficient to calculate theqth order moment.

Next, we measure the amplitude of the effective no
hm[dh(x,t11)2dh(x,t) from the growth patterns directly
@17#. Figure 3 shows a log-log plot of the probability distr
bution P(uhmu) vs uhmu. The parameters used areL51024,
T55000, andN5100. P(uhmu) clearly shows power-law
behavior, but these exponents are slightly different fr
01160
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2(m11). Since these distributions obey the power law,
denote the exponent as2n in this paper. This difference
between2(m11) and 2n might result from the latera
growth effect of the BD model, which corresponds to t
nonlinear term in the KPZ equation.

III. ASYMPTOTIC FUNCTION

Here, we calculate the multigrowth height-height corre
tion functionCq(0,t) based on the multiaffine concept@20#.
We discuss the growth path at some positionx8: dh(x8,t).
Figure 4 shows a schematic image of the growth path. T
growth pathdh(x8,t) is the intersection with thedh(x,t)
surface at some positionx5x8. We can generally normalize
the time range and height toT and dhmax2dhmin , respec-
tively, i.e., we consider the pathdh(x8,t) for the range 0
<t<1 and 0<dh<1. We can use the local growth expo
nent g to characterize the local singularity of the surfa
growth udh(x8,t81t)2dh(x8,t8)u;tg, wheret5T21 and
g>0. The number of height difference segments of len
l 5udh(x8,t81t)2dh(x8,t8)u in the growth path can be
written asl 2n from the results of Fig. 3. Therefore, the num
ber of segments on growth pathN(g)dg that have singular-
ity exponents in the range (g,g1dg) is found to scale with
t asNt(g);t2gn. We can obtain the height-height correl

FIG. 1. Theqth order height-height correlation functions atm
53.0. ~a! (1/q)ln Cq(x,0) vs lnx. ~b! (1/q)ln Cq(0,t) vs ln t. In the
figures, the curves correspond toq51,2, . . .,10, from bottom to
top.
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tion function for the limitt→0 as follows:

Cq~0,t!;
1

TE ~tg!qNt~g !r~g !dg;E t11gq2gnr~g !dg,

~4!

where the functionr(g ) is a density function independent o
t. For a continuous system, the integral in Eq.~4! must be

FIG. 2. Theq dependences of~a! aq and~b! bq . The solid and
broken lines correspond to the asymptotic functions 1/q and 2/(q
11), respectively. The inset in~b! is a log-log plot.

FIG. 3. The distribution of height differences between neighb
ing times. The relation betweenm ~input noise parameter! and n
~measured noise parameter! is plotted in the inset.
01160
dominated by the value ofg that minimizes 11gq2gn.
Therefore, we replaceg with the valueg(q) and compare
the exponent with Eq.~2b!,

bq5
1

q
1g~q!S12

n

qD . ~5!

Note thatg(q) decreases monotonically with increasin
q, andg(q)>0 @21#. In the limiting caseq@1, we assume
that g(q) vanishes faster than 1/q. Finally, we obtain a
simple asymptotic form ofbq as

bq5
1

q
at q@1. ~6!

We plot the function 1/q in Fig. 2 as solid lines. While this
function does not include any fitting parameter, the simula
data agree with this function for largeq in Fig. 2~b!. If we
assume that the relationaq1(aq /bq)52 holds for higher
orderq, the asymptotic form ofaq can be calculated as

aq5
2

q11
, at q@1. ~7!

This function is plotted in Fig. 2~a! as a broken line. The
simulated values ofaq seem to distribute in the region 1/q
<aq<2/(q11) at largeq.

IV. DISCUSSION

The contribution of large segments in the integral of E
~4! becomes dominant for higher orderq. Since large seg-
ments are characterized by smallg in our notation,g(q)
decays rapidly due to the presence of large rare events
power-law distributed noise. Then, the effect ofm ~or n)
becomes negligible, as written in Eq.~6!. Moreover, Eq.~5!
becomes equivalent to Eq.~6! at q.n. Since the absolute
value of the second term in Eq.~5! is not small,bq deviates
from Eq. ~6! at q,n. This qualitative change aroundq.n
corresponds to the phase transition point of Baraba´si et al.
@13#. The term 1/q originates solely from the normalizatio
factor 1/T in Eq. ~4!. The presence of large rare events

-

FIG. 4. A schematic image of the growth path. The surfa
profile dh(x,t8) corresponds to a snapshot of the surface at so
time t8. The intersection between the rough surfacedh(x,t) and
some positionx5x8 is the growth path.
1-3
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necessary, but the value of the exponent of noise distribu
is not important for obtaining the asymptotic result Eq.~6!.

In the early growth stage, we can confirm the KPZ u
versality scaling law perfectly. For instance, we calcula
aq at T52000 and found that allaq approach the curve fo
Eq. ~7! independent ofm. In addition, a crossover to conven
tional non-multiaffine scaling at largex is clearly observed.
We can also observe power-law-like tails of the distributi
of the height differencedh(x11,t)2dh(x,t). Then, aq
leads to the function 1/q for the limit T→` using the same
calculation as forbq . Since the nonuniformity of the power
law noise increases asm decreases, the influence of larg
rare events dominates in the smallm system. Therefore, the
smallerm becomes, the neareraq approaches 1/q. Namely,
aq obeys the KPZ universality scaling law 2/(q11) in the
early growing stage, and obeys the rare event dominant
havior 1/q in the fully developed stage.

In the inset of Fig. 2~b!, a slight discrepancy between th
simulated data and the function 1/q is observed. The discrep
ancy is due to the small, but finite,g(q) effect. Since the
probability of finding a large event decreases asm increases,
the valueg(q) does not decay quickly whenm is large.
Therefore, the statistical property for largem deviates from
the power-law noise case and approaches the Gaussian
case@16#. The range 2<m<5 is considered the power-law
dominant range. In this sense, Eq.~6! might be a limited
approximation form. The precise correction to use for
b,

ro

.
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range of smallm ~in particular, the Le´vy distribution case
m<2) remains unsolved.

In a paper combustion front experiment,bq varied across
the value 0.5, andaq did not fall beneath 0.5@17#. This
tendency inbq is similar to our result. Myllyset al. found
the effective power-law noise amplitude in their system to
3.72<n<5.0. Our simulations include this range. Then, t
behavior ofbq inevitably approaches the form of Eq.~6!.
However, the behavior ofaq differs from our result. This
means that the paper combustion front grows according
power-law noise, but breaks the KPZ universality at sh
range in a different manner from our result. This experime
tal system might belong to another universality class.
other experimental systems,qth order exponents should b
measured in order to discuss universality classification
detail. There have been no multiaffine analyses of other m
els, such as the quenched noise, correlated noise, or
class models. Both numerical and experimental studies
needed to further understand growing rough surfaces.

In summary, we performed numerical simulations of t
BD model with power-law distributed noise (2<m<5). The
simulatedqth order growth exponent is in good agreeme
with the approximate asymptotic functionbq51/q for higher
order q. Assuming the KPZ universality scaling lawaq
1(aq /bq)52, we obtainaq52/(q11). aq is distributed in
the region 1/q<aq<2/(q11). This indicates thataq is de-
termined by competition between large rare events and K
universality.
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